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Computer-Aided Synthesis of Planar Circuits
FUMIO KATO, MASAO SAITO, MEMBER, IEEE, AND TAKANORI OKOSHI, MEMBER, IEEE

Abstract—This paper presents a fully computer-oriented iterative

synthesis of an open-boundary planar circuit having an impedance
matrix with prescribed poles and residues. A starting circuit pattern
is given first, and it is represented by a finite nnmber of parameters.
Those parameters (and hence, the pattern) are then iteratively

modified by using the Newton–Raphson method to realize the

prescribed circuit characteristics. When the numbers of given poles
and coupling ports are relatively small, the results are satisfactory

botb in the computing time and accuracy. Some numerical examples

are given.

I. INTRODUCTION

T HE PLANAR (two-dimensional) circuit is a circuit

category that should be positioned between the

distributed-constant circuit and the waveguide circuit [1].

As this concept was originally proposed for rigorous

analysis and design of microwave and millimeter-wave IC’S,

its synthesis (determination of the circuit pattern giving

prescribed circuit characteristics) is an important technical

task.

However, although a number of methods have been

presented for the analysis [1]–[4], rather few papers have

ever dealt with the synthesis. Okoshi et al. described a

trial-and-error synthesis of a ladder-type 3-dB hybrid con-

sisting of wide striplines [5]; their synthesis, however, is

never of a general nature. Gruner dealt with the conformal-

mapping synthesis of a thin waveguide section [6]. Since a

thin waveguide section can be regarded as a short-boundary

planar circuit, his method will also be applicable, if appro-

priately modified, to open-boundary planar circuit.

However, Gruner described synthesis of only poles of

transmission characteristics. Synthesis of residues must also

be performed to make the synthesis complete.

This paper presents a fully computer-oriented iterative

synthesis of an open-boundary planar circuit having an

impedance matrix with prescribed poles and residues. Ba-

sically, this paper’s aims are similar to Gruner’s [6]; the

differences are: 1) open-boundary problems are considered,

2) prescribed residues are realized in addition to poles, and

3) the mapping technique has been improved.

II. BASIC EQUATIONS AND PRINCIPLE

OF ANALYSIS

A. Circuit Equations and Impedance Matrix

Consider a planar circuit as shown in Fig. 1. It consists of a

conductive (circuit) plate with an arbitrary shape, an iso-
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Fig. 1. An open-boundary planar circuit.
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Fig. 2. Schematic representation of a multiport planar circuit.

‘tropic dielectric layer, and a ground plate. i The boundary

of the circuit pattern is denoted by r, and its interior is

henceforth called the circuit pattern and is denoted by S.

The spacing d between the circuit plate and the ground

plate ‘is assumed to be much less than the wavelength. The

circuit is assumed to be lossless.
The steady-state circuit equation is then given by the

following two-dimensional Helmholtz equation:

V%(x>y) + h(x,y) = o (1)

where A = co2&p,z and p are the permittivity and permeabil-

ity of the spacing material, respectively, and V2 denotes the

Laplacian [1]. Upon r where no coupling port is present, the

boundary condition is given as

(2)

where 8/8n denotes the derivative normal (outward) to r.
Equations (1) and (2) give a countably infinite number of

eigenvalues Ii and associated normalized eigenfunctions

Vi(x,y).

When t ports are connected to the circuit plate, as shown

in Fig. 2, at positions P ~,P2, ..-, Pt and assumed to have

negligible widths as compared with the wavelength, the (m,n)

1 In the earlier papers [1]–[4], triplate-type planar circuits have been
mainly dealt with. In this paper a two-plate circuit as shown in Fig. 1 is

considered for its simplicity. Mathematically the above two types are
equivalent, except that in the former the impedance level is reduced by one
half because currents flow in both the upper and lower surfaces of the
circuit plate.
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element of the impedance matrix of the t-port circuit is

expressed in terms of lt and ~i as [1]

‘.. = ,jom “ivy. (3)

We should note that A/s correspond to poles of Z~n and that

~i(P~) and vt(P.) determine the residue matrix associated

with Ai.

B. Approximate Solution by Rayleigh-Ritz Method

An approximate solution (Ii and ~i) of (1) can be obtained

from the stationary condition of the functional

Let v(x,y) be expanded approximately by a truncated series

u(x,y) = ~ a~f~(x,y) (5)
ksl

where {~k(x,y)} is a system of functions which is complete in

the region S.

We rewrite the variational problem, (4), into a form which

is more suitable to the computer analysis. By using

III. METHOD OF SYNTHESIS

In the following synthesis, we must represent the circuit

pattern and port locations with a finite set of parameters.

However, whatever parameters are employed, the essential

process of the synthesis remains unchanged. Hence, we

begin this section with a general description of the synthesis

without specifying any particular type of parameters. In

Section III-D, two practical choices of the parameters will be

presented.

A. Modijied Newton-Raphson Method

We first describe the iterative process used in the syn-

thesis. Consider a system of n equations to be solved:

[1
F1(X)

F(x) = : =0 (12)

F.(X)

where X denotes a column vector whose elements are

N(N > n) unknown quantities representing the circuit

pattern, that is, X = (Xl, X2,..., X~)~. The Jacobian matrix

of F(X) with respect to X is expressed as

[

Jllpl “““ ‘@(x)

J(X) = 1 (13)

Jnl(x) ““” ‘:N(4

s-
Jtj(X)=~, i=l,,n; j=l,,N. (14)

B~,=~~f~jdS, k,l= 1,2,,M (6b)
1

We first assume a vector XO) as the initial pattern, and

~=~:1 :::;:] l?=~;, ::: ::] as,,]
modify it to obtain the solution of (12). For this purpose, the

(7) (h+ l)th solution should be obtained from the hth solution

(4) is reduced to a matrix eigenvalue problem ~’+’) = ~’) - J-(~’))wh)) (15)

(A - MI)a = O (8) where J- represents a generalized inverse matrix of J. Then

where a denotes a column vector consisting of the X@) should finally converge to X* which satisfies

coefficients al, a2, “””, a~ in (5). Thus, from the nontrivial JT(X*)F(X*) = o.
condition of(8), the eigenvalues can be obtained as the roots

(16)

of the characteristic equation In particular, when rank {J(X*)} = n as is usually the case,

det (A – M?)= O. (9) F(x”) = o (17)

The corresponding eigenvector a is then obtained from (8) holds, which is the condition to be satisfied.2 If we add, in

except for a constant multiplier, which is determined by computing Xk), an additional condition (the minimum

using the normalizing condition norm condition)

.
~ 1~k+l) – ~h) I = minimum

Jj u2(~?Y) ds = 1 (lo)
(18)

s then the modification algorithm, (15), is rewritten as [7]

In the actual computation, the constant multiplier of a is
x(h+ 1) = ~W _ ~(Jr)- ‘~(~’)). (19)

determined by the matrix equivalence of (10):

aTBa = 1 (11) 2 In order that X converges to the solution, Xo) must satisfy some
conditions, which have been discussed in detail by Ben-Israel [7].

where superscript T denotes transposition. Finally, o is given
However, the convergence is guaranteed if (15) is modified so that the
convergence is decelerated [8]. Such a modified equation is used in the

in terms of a by using (5). computation described in Section IV.
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B. Synthesis of Prescribed Poles

For some practical purposes such as the design of a

bandpass filter or the suppression of spurious modes in a

resonator, synthesis of the poles (eigenvalues) disregarding

the residues is useful to some extent [6]. In this subsection, to

begin with, eigenfunctions are not considered; a circuit

pattern having several prescribed eigenvalues will be

synthesized.

We assume that a set of the smallest n eigenvalues A = @~,

A ..”,2.)T (O= AO<21<2, <””” <2n; n< N)are given.

F?om (9), those must satisfy

Fi(~ = det {A(X) – AiB(~} = O, i= l,... , n. (20)

As discussed in the preceding subsection, Xis successively

modified by the Newton–Raphson method to arrive finally

at the solution satisfying F(X*) = O. We assume that

Fi(x) # O and write

Ci(x)= A(x) – 2iB(x). (21b)

Matrix Ci(m is then regular, and .lijin (14) maybe rewritten

as

where [C’i]~ 1 represents the (k,l) element of the inverse

matrix of C’i. In actual synthesis of a circuit, each

modification should be as small as possible to avoid an

unreasonable circuit pattern and oscillation of the solution.

Therefore we use (19) rather than (15).

The initial circuit pattern X“) must be chosen with some

care. We may reconcile at least one eigenvalue to the desired

value merely by multiplying Xo) by a positive constant.

Empirically, the convergence seems to be improved by

choosing the initial pattern Afo) so that its nth (highest)

eigenvalue is equal to the prescribed value.

C. Synthesis of Prescribed Impedance Matrix

We assume t coupling ports along the boundary. The

residues of the impedance matrix (V dvi(Pm)vi(PJ in (3)) are

now considered as well as the poles. Let the positions of the

ports be denoted by PI,”. o,P,; their parameter representa-
tions, by b ~,..., bc Since the values of eigenfunctions at those

ports must be adjusted as well as the eigenvalues, each step

of the synthesis must include shifts of the port locations P ~,
o.., P,. Therefore, the parameters representing a circuit

pattern are now

x=(xl, ”””, xN, al, ”””, &)~. (23)

The input data now comprise the number of ports t, the

prescribed eigenvalues Ii (i = 1, 0.”, n), and the values of

associated eigenfunctions at the kth port qi~ (i = 1, “””, n;
k= l,.”. , t).Let Ii(x) denote the ith eigenvalue of the circuit
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Fig. 3. Representation of the circuit pattern m the sector method,

pattern X, vi~(x), the value of the corresponding eigenfunc-

tion at the kth port. Then we may a~ply the Newton–

Raphson method to the following equa~(o~s:

F(X) =

F1(X)

F@)

F.+:(x) L
al(x) –J,

— J..(x)”– an—
VII(X) – q~~ = O. (24)

%(X) — %t

The Jacobian matrix of F(X) is then obtained from (5), (8),

(11), and (24). ~ ‘
., ..,.

D. Parameters Representing Circuit Pattern

In Sections III-B and -C, the synthesis process has been

formulated without referring to the implication of the

parameters representing the circuit pattern. In this subsec-

tion, two choices of the parameters are described.

1) Sector Method: We assume an origin O in the region S

and N sampling points along the boundary I’. The sampling

points are chosen so that the angle at the origin subtended

by any adjacent two sampling points is equal to 27c/N (see

Fig. 3). We denote the distance between the origin and each

sampling point by Xl, X2, “””, X~; the circuit pattern is then

represented approximately by X = (X ~,Xz, ”””, X~) ~.When

we finally obtain Xj’s satisfying

Xj >0, j=l, ....N (25)

we may consider X to be physically realizable.

In the polar coordinates, A~l is given, from (6a), as

(26)

and its derivative with respect to Xj as

~=j” Vf,v’r do
J Qj– , ~=xj

(27)

Expressions for B~l and its derivative maybe given in similar

forms.
We may use the above parameters in either of the

syntheses described in Sections III-B and -C. For conve-

nience those combinations will hereafter be called synthesis

processes I and II, respectively. In process II, however, we

find some difficulty in considering the external ports because
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of an inherent discontinuous nature of the bounda~ry consist-

ing of many sectors (see Fig. 3).

2) Conformal-Mapping Method: Any simply connected

region S in the complex z plane can be mapped from the

interior of a unit circle Q in another complex ~ plane (see Fig.

4) by a regular function

z=x+jy=rj(f) (28)

which we express by a truncated Maclaurin series as3

Thus the pattern S can be represented by ~k ancl flk (k = 1,

“””, m). Further, we define a vector X as

X= (X1, X2,..., ‘N- I, XN)T = (~1,fll, “ ‘“, ‘$%, fim)T

(30)
where

N=2m (31a)

X2k_1 = ~k x~k = fl~, k= l,..., m. (3 Ib,c)

Equation (1) expressed in the z plane is transform~ed, in the ~

plane, to

The boundary condition, (2), remains unchanged because a

mapping by a regular function is conformal. In accordance

with the above equation, we define A~l and Bkl as

with which the matrix eigenvalue problem is expressed in the

same form as (8). Quantities A~l and Bk[ and their deriva-

tives with respect to Xj can be computed easily because the

region of integrals in (33) and (34) is a unit circle. Further-

more, A~,’s are independent of’ rj(~); hence

aAk,
—=0,
axj

j= l,.., N; k,l= l,.. , M (35)

holds.

Let those points in the L plane corresponding to the

positions of ports PI, o.”, P, be denoted by (Q~, .””, Q,,

respectively. Those points are all located on the unit circle;

hence, their arguments d ~, “.”, J, can be used as the

parameters representing the port locations (see Fig. 4).

3 Instead of (29), Gruner [6] used an expansion of the form I ~(~) 12=
exp {~:= ~ Ck fk(<,q)} where ~~(<,q) is a harmonic function. Therefore, a

differential equation must be solved to determine the mapping function
+(~) from I ~’(~) l’. Expansion (29) seems better than Griiner’s because
mapping function @(() is directly obtained from calculated coefficients as a
regular function.

z-plane z -plane

Fig. 4. Conformal mapping from the ~ plane into the z plane.

Fig. 5. An example of the circuit pattern without physical realizability.

TABLE I

FUNDAMENTAL FUNCTIONS USED IN THE SYNTHESIS

1 r F . ...,... rnr

r sin O rz sin O . . . . . . . . rnr sin e

r cos O 1+ Cos e . . . . . . . . rnr cos 8

rsinne
e

r2 sin notl . . . . . . . . ~nr sin ~oe

We may apply the above conformal-mapping method to

either of the syntheses described in Sections III-B and -C.

They will be called synthesis processes III and IV, respec-

tively. A problem in these processes is that the multivalent

region, shown in Fig. 5, sometimes appears as the result of

mapping, To prevent this, at least

d(() # o (36)

must hold in !2 This condition is not always satisfied easily.

IV. EXAMPLES OF SYNTHESIS

Examples of synthesis based upon processes I-IV will be

described. The fundamental functidns used are shown in

Table I, where n, = 4 and no= 2.

A. Synthesis Processes I and II

The given parameters are: N = 32, n = 3, A~ = 3.4,
22 = 7.0, and As = 7.4. The successive modification of the

circuit is shown in Fig. 6 for process I and in Fig. 7 for

process II. Fig. 8(a) and (b) depicts how the lowest three

eigenvalues of the circuit approach the prescribed values as

the analysis and modification are iterated for process I and

II, respectively. In Fig. 8 the horizontal solid lines indicate

the prescribed eigenvalues.

These examples show that process I produces a smoother

pattern than process II, but much more iteration is needed to
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Fig. 8.

Fig. 6. Circuit patterns for iteration numbers h = O, 7, 20, and 32 by process I (graphic output of the computer).

Fig. 7. Circuit patterns for iteration numbers ~ = O, 2, 4, and 7 by process II (graphic output of the computer).

Step h Step h

(a) (b)

The behavior of eigenvalues. (a) The case of Fig.

Fig. 7.
6. (b) The case of

reach the prescribed eigenvalues. The above statement is

valid for almost all cases. The computer time required for

one cycle of analysis and modification was about 2s in both

processes when HITAC-8800 was used.

B. Synthesis Processes III and IV

Synthesis processes III and IV were applied to a similar

problem, in which n = 3, Al = 3.5; AZ = 5.0, and A3 = 7.0.

tj

The degree of the mapping function m = 16, that is, N = 32.

The details of the modification processes are omitted for the

sake of brevity.

The computer time for one cycle was about 2.5 sin both

processes. The differences in the final pattern and in the

speed of convergence were not remarkable for the two

processes. However, processes III and IV are inferior to

processes I and II in that the behavior of the convergence is

somewhat oscillatory. Besides, in some cases, a univalent

mapping could not be found. These methods, therefore,

should better be employed only when external coupling

ports must be considered.

Therefore, in this subsection, synthesis of an impedance

matrix of a two-port planar circuit using process IV will be

described in more detail. Two eigenvalues 1.~ = 4.0 and

22 = 5.0 are specified, and the prescribed values of the

associated eigenfunctions at the ports are given as,

qil = 0.95, q12 = 0.95, q21 = –0.7, and q2, = 1.6 (see (24)).
Figs. 9 and 10 show the modification process and the

convergence of parameters, respectively. In Fig. 9, P ~and P2

denote the port locations. The computer time required for

one step was a little less than 2 s.

Fig. 9. Circuit patterns and port locations for iteration numbers h = 0,3, 6, and 13 where P ~and Pz indicate port 1 and port 2,

respectively (graphic output of the computer).
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! ,~ proposed method practical, especially for larger numbers of

Step h

Fig. 10. The behavior of eigenvalues and the values of eigenfunction5 at
the ports in the case of Fig. 9.

V. CONCLUSION

A basic algorithm and numerical examples of the syn-

thesis of planar circuits have been presented. When the

number of the prescribed eigenvalues and external ports is

relatively small, the results are satisfactory both in the

computing time and accuracy. However, research is still at a

primitive stage; further efforts are needed to, make the

Equivalent

eigenvalues and ports. In synthesis processes III and IV, the

problem of the multivalent region must be overcome to

make those methods practical. -
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Circuit Capacitance of
Step Change in Width

Microstrip

CHANDRA GUPTA, STUDENT MEMBER, IEEE, AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Calculated results which extend existing data on the

capacitance of step discontinuity are presented for w ~/H of value 0.1,

0.5,1.0, and 2.0, for relative dielectric constants of 15.1,9.0,4.0, and
2.3, and for Wz /H in the range 0.1–10.0. The quasi-static method of

calculation is used, and the excess capacitance associated with the
steps is determined hy the solution of the integral equation using

Green’s functions.

INTRODUCTION

T

HE RANGE of data currently available on the micro-

strip discontinuities is inadequate, thus microstrip cir-

cuit designs are currently implemented after a few trial

stages. The present paper extends the range of the capaci-
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tances of the step change in width discontinuity beyond that

provided by Farrar and Adams [1] and 13enedek and

Silvester [2]. The calculations performed for this data utilize

the integral equation approach using Green’s functions and

the concept of “excess charge” due to Benedek and Silvester

[2] to preserve numerical accuracy. The method of solution

discretizes the discontinuity into rectangular elements

and the excess charge is obtained by the Galerkin method.

Radiation and dispersion effects are neglected, and, there-

fore, the microstrip discontinuity problem maybe reduced

to a quasi-static form. The stored energy of the step discon-

tinuity may then be represented by an equivalent circuit in
the form of a T circuit, given in Fig. l(b), for the chosen

reference planes TT’. The present calculations evaluate the

shunt capacitance of this circuit, the inductive compomm ~.

have been presented elsewhere [3].

In the following sections, we briefly outline the formula-

tion and the method of solution followed by the results.


