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Computer-Aided Synthesis of Planar Circuits

FUMIO KATO, MASAO SAITO, MEMBER, IEEE, AND TAKANORI OKOSHI, MEMBER, IEEE

Abstract—This paper presents a fully computer-oriented iterative
synthesis of an open-boundary planar circuit having an impedance
matrix with prescribed poles and residues. A starting circuit pattern
is given first, and it is represented by a finite number of parameters.
Those parameters (and hence, the pattern) are then iteratively
modified by using the Newton-Raphson method to realize the
prescribed circuit characteristics. When the numbers of given poles
and coupling ports are relatively small, the results are satisfactory
both in the computing time and accuracy. Some numerical examples
are given.

1. INTRODUCTION

HE PLANAR (two-dimensional) circuit is a circuit

category that should be positioned between the
distributed-constant circuit and the waveguide circuit [1].
As this concept was originally proposed for rigorous
analysis and design of microwave and millimeter-wave IC’s,
its synthesis (determination of the circuit pattern giving
prescribed circuit characteristics) is an important technical
task.

However, although a number of methods have been
presented for the analysis [1]-[4], rather few papers have
ever dealt with the synthesis. Okoshi et al. described a
trial-and-error synthesis of a ladder-type 3-dB hybrid con-
sisting of wide striplines [5]; their synthesis, however, is
never of a general nature. Griiner dealt with the conformal-
mapping synthesis of a thin waveguide section [6]. Since a
thin waveguide section can be regarded as a short-boundary
planar circuit, his method will also be applicable, if appro-
priately modified, to open-boundary planar Ccircuit.
However, Griiner described synthesis of only poles of
transmission characteristics. Synthesis of residues must also
be performed to make the synthesis complete.

This paper presents a fully computer-oriented iterative
synthesis of an open-boundary planar circuit having an
impedance matrix with prescribed poles and residues. Ba-
sically, this paper’s aims are similar to Griiner’s [6]; the
differences are: 1) open-boundary problems are considered,
2) prescribed residues are realized in addition to poles, and
3) the mapping technique has been improved.

II. Basic EQUATIONS AND PRINCIPLE
OF ANALYSIS

A. Circuit Equations and Impedance Matrix

Consider a planar circuit as shown in Fig. 1. It consists of a
conductive (circuit) plate with an arbitrary shape, an iso-
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CONDUGTIVE { CIRCUIT )

Fig. 1. An open-boundary planar circuit.

Fig. 2. Schematic representation of a multiport planar circuit.

"tropic dielectric layer, and a ground plate.' The boundary

of the circuit pattern is denoted by I, and its interior is
henceforth called the circuit pattern and is denoted by S.
The spacing d between the circuit plate and the ground
plate is assumed to be much less than the wavelength. The
circuit is assumed to be lossless.

The steady-state circuit equation is then given by the
following two-dimensional Helmholtz equation:

V2u(x,y) + Av(x,y) =0 (1)
where /. = w?ep, ¢ and y are the permittivity and permeabil-
ity of the spacing material, respectively, and V> denotes the
Laplacian [1]. Upon I" where no coupling port is present, the
boundary condition is given as

v
—=0 2
on @
where 0/0n denotes the derivative normal (outward) to I.
Equations (1) and (2) give a countably infinite number of
eigenvalues A; and associated normalized eigenfunctions
vi(x,y).

When ¢ ports are connected to the circuit plate, as shown
in Fig. 2, at positions P,, P,, ---, P, and assumed to have
negligible widths as compared with the wavelength, the (m,n)

!n the earlier papers [1]-[4), triplate-type planar circuits have been
mainly dealt with. In this paper a two-plate circuit as shown in Fig. 1 is
considered for its simplicity. Mathematically the above two types are
equivalent, except that in the former the impedance level is reduced by one
half because currents flow in both the upper and lower surfaces of the
circuit plate.
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element of the impedance matrix of the t-port circuit is
expressed in terms of 4; and v; as [1]

= —jeoud
Zmn =
iZO A=A

vP)oi(Py)- 3)

We should note that 1;’s correspond to poles of Z,,,and that
vi(P,) and v;(P,) determine the residue matrix associated
with 4;.

B. Approximate Solution by Rayleigh-Ritz Method

An approximate solution (4; and v;) of (1) can be obtained
from the stationary condition of the functional

102) = [ (%)2 + (%)2 - sz}dS.

S
Let v(x,y) be expanded approximately by a truncated series

(4)

M

v(xy) = 3. aflx.y)

k=1

(5)

where { f(x,y)} is a system of functions which is complete in
the region S.

We rewrite the variational problem, (4), into a form which
is more suitable to the computer analysis. By using

Ay = j j Vf, - Vf, dS (6a)
5
By=[[fifidS, ki=1,2-M  (6b)
s
A1 Aym By Biu
A= | : B=| : : (7)
Ay - Amm Bary Buwu
(4) is reduced to a matrix eigenvalue problem
(4—AB)a=0 (8)

where a denotes a column vector consisting of the
coefficients ay, a,, **+, ay in (5). Thus, from the nontrivial
condition of (8), the eigenvalues can be obtained as the roots
of the characteristic equation

det (4 — AB) = 0. )

The corresponding eigenvector a is then obtained from (8)
except for a constant multiplier, which is determined by
using the normalizing condition

[[ 2oy ds =1 (10)

S

In the actual computation, the constant multiplier of a is

determined by the matrix equivalence of (10):
a'Ba=1

(11)

where superscript T denotes transposition. Finally, vis given
in terms of a by using (5).
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ITII. METHOD OF SYNTHESIS

In the following synthesis, we must represent the circuit
pattern and port locations with a finite set of parameters.
However, whatever parameters are employed, the essential
process of the synthesis remains unchanged. Hence, we
begin this section with a general description of the synthesis
without specifying any particular type of parameters. In
Section IT1-D, two practical choices of the parameters will be
presented.

A. Modified Newton—-Raphson Method

We first describe the iterative process used in the syn-
thesis. Consider a system of n equations to be solved:

Fy(X)
Fx=| 7 [ =0
F{X)

where X denotes a column vector whose elements are
N(N =n) unknown quantities representing the circuit
pattern, thatis, X = (X, X ,,-*+, X y)". The Jacobian matrix
of F(X) with respect to X is expressed as

(12)

Ju_(X) J1x(X)
J(X) = : : (13)
Jnl(X) JnN(X)
where
Jij(X)=ag;(f), i=1,,m j=1,, N. (14)

We first assume a vector X© as the initial pattern, and
modify it to obtain the solution of (12). For this purpose, the
(h + 1)th solution should be obtained from the hth solution
as [7]

X0+ = X0 J- (XO)F(X®) (15)

where J~ represents a generalized inverse matrix of J. Then
X® should finally converge to X* which satisfies

JT(X*)F(X*) = 0. (16)
In particular, when rank {J(X*)} = n as is usually the case,
F(X*)=0 (17)

holds, which is the condition to be satisfied.2 If we add, in
computing X®, an additional condition (the minimum
norm condition)

| XD — X®| = minimum

(18)

then the modification algorithm, (15), is rewritten as [7]

XY = X0 _ JT(JJT)T L F(X®). (19)

21In order that X converges to the solution, X must satisfy some
conditions, which have been discussed in detail by Ben-Israel [7]
However, the convergence is guaranteed if (15) is modified so that the
convergence is decelerated [8]. Such a modified equation is used in the
computation described in Section IV.
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B. Synthesis of Prescribed Poles

For some practical purposes such as the design of a
bandpass filter or the suppression of spurious modes in a
resonator, synthesis of the poles (eigenvalues) disregarding
the residues is useful to some extent [6]. In this subsection, to
begin with, eigenfunctions are not considered; a circuit
pattern having several prescribed eigenvalues will be
synthesized.

We assume that a set of the smallest n eigenvalues 4 = (4,
Aoy ) (0= Ao <Ay <Ay < <A, n < N)are given.
From (9), those must satisfy

F{(X) = det {A(X) — 4,B(X)} = 0,

As discussed in the preceding subsection, Xis successively
modified by the Newton-Raphson method to arrive finally
at the solution satisfying F(X*)=0. We assume that
Fi(X) # 0 and write

;cl(X) = Akl(X) - A'inl(X)
C(X) = A(X) — 4, B(X).

Matrix CE(X) is then regular, and J;;in (14) may be rewritten
as

i=1,-,n(20)

(21a)
(21b)

v oc

Ji(X) = F(X) k; l; oX,

[Clla’ (22)

where [Cj];! represents the (k) element of the inverse
matrix of C;. In actual synthesis of a circuit, each
modification should be as small as possible to avoid an
unreasonable circuit pattern and oscillation of the solution.
Therefore we use (19) rather than (15).

The initial circuit pattern X must be chosen with some
care. We may reconcile at least one eigenvalue to the desired
value merely by multiplying X by a positive constant.
Empirically, the convergence seems to be improved by
choosing the initial pattern X so that its nth (highest)
eigenvalue is equal to the prescribed value.

C. Synthesis of Prescribed Impedance Matrix

We assume ¢ coupling ports along the boundary. The
residues of the impedance matrix (u dv(P,,Jv{(P,)in (3)) are
now considered as well as the poles. Let the positions of the
ports be denoted by P, -+, P,; their parameter representa-
tions, by d,,- -, d,. Since the values of eigenfunctions at those
ports must be adjusted as well as the eigenvalues, each step
of the synthesis must include shifts of the port locations P,
*++, P,. Therefore, the parameters representing a circuit
pattern are now

X=(Xla'”9XN>519'“95t)T' (23)

The input data now comprise the number of ports ¢, the
prescribed eigenvalues A; (i = 1, ---, n), and the values of
associated eigenfunctions at the kth port g, (i=1, ", n;
k = 1,---,¢). Let A{X)denote the ith eigenvalue of the circuit
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Fig. 3. Representation of the circuit pattern in the sector method.

pattern X; v,(X), the value of the corresponding eigenfunc-
tion at the kth port. Then we may apply the Newton-
Raphson method to the following equations:

Fy(X) 24(%) — 44
F | X =2

F(X) - Fn-lflf)X) U11((§))__ q11 =0 (24)
F"(t +.1)(X) vnt(X)'_ Gnt

The Jacobian matrix of F(X) is then obtained from (5), (8),
(11), and (24).

D. Parameters Representing Circuit Pattern

In Sections III-B and -C, the synthesis process has been
formulated without referring to the implication of the
parameters representing the circuit pattern. In this subsec-
tion, two choices of the parameters are described.

1) Sector Method: We assume an origin O in the region S
and N sampling points along the boundary I". The sampling
points are chosen so that the angle at the origin subtended
by any adjacent two sampling points is equal to 2r/N (see
Fig. 3). We denote the distance between the origin and each
sampling point by X, X,, -+, X y; the circuit pattern is then
represented approximately by X = (X 4, X5, -, X 5)". When
we finally obtain X /s satisfying

X;>0, j=1-,N (25)
we may consider X to be physically realizable.
In the polar coordinates, A4, is given, from (6a), as
N X; .05
A=Y j [ Vh-Virdrao, ki1=1,--,M
=10 6i-1
(26)
and its derivative with respect to X; as
= Vi - Vfir do. 27
>0 j o V| (27)

Expressions for B, and its derivative may be given in similar
forms.

We may use the above parameters in either of the
syntheses described in Sections III-B and -C. For conve-
nience those combinations will hereafter be called synthesis
processes I and II, respectively. In process II, however, we
find some difficulty in considering the external ports because
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ofan inherent discontinuous nature of the boundary consist-
ing of many sectors (see Fig. 3).

2) Conformal-Mapping Method: Any simply connected

region S in the complex z plane can be mapped from the
interior of a unit circle Qin another complex { plane (see Fig.
4) by a regular function

z=x+jy=¢()

which we express by a truncated Maclaurin series as?

(28)

Z (ot + jB)EF oy and B, are real.  (29)
Thus the pattern § can be represented by «; and B, (k =

-+, m). Further, we define a vector X as

X= (Xl’ D SN Xy-1s XN)T= (“1:' .31’ T s ﬁm)T

30

where (30)

N =2m (31a)

XZk_1=O(k X2k=Bk’ k=1,"',m- (31b,C)

Equation (1) expressed in the z plane is transformed, in the {
plane, to '

2 2 20 A
Vv + 2| ¢'(()2v =0 (VC —a +5,?). (32)

The boundary condition, (2), remains unchanged because a
mapping by a regular function is conformal. In accordance
with the above equation, we define A4;; and B, as

Ay = “ Vi Vfi dS dn (33)
= [[AAle©F a¢ an (34)

Q

with which the matrix eigenvalue problem is expressed in the
same form as (8). Quantities 4,; and B,, and their deriva-
tives with respect to X ; can be computed easily because the
region of integrals in (33) and (34) is a unit circle. Further-
more, A,;’s are independent of ¢({); hence

0Ay
0X

=0, j=1,-,N; kliI=1--M (35
J
holds.

Let those points in the { plane corresponding to the
positions of ports P,, -+, P, be denoted by Q,, -*-, Q,,
respectively. Those points are all located on the unit circle;
hence, their arguments 6,, *--, J, can be used as the

parameters representing the port locations (see Fig. 4).

3 Instead of (29), Griiner [6] used an expansion of the form |¢'((
exp Y1 ¢ fil&n)} where f,((n) is a harmonic function. Therefore, a
differential equatlon must be solved to determine the mapping function
@(0) from |¢'({)|> Expansion (29) seems better than Griiner’s because
mapping function ¢({) is directly obtained from calculated coefficients as a
regular function.

IZ
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Q
)= 1

z-plane Z, -plane

Fig. 4. Conformal mapping from the { plane into the z plane.

Fig. 5. An example of the circuit pattern without physical realizability.

TABLE I
FUNDAMENTAL FUNCTIONS USED IN THE SYNTHESIS

n
1 v 2 e rr
r sin 8 r2 sin 96 ceeeees- 'Y sin o
r cos @ r2 cos 8 0 seereses Y cos 8
r sin nee r2 sin nee -------- r’'T sin nee
r cos nee r? cos nee -------- r'T cos nee

We may apply the above conformal-mapping method to
either of the syntheses described in Sections III-B and -C.
They will be called synthesis processes Il and IV, respec-
tively. A problem in these processes is that the multivalent
region, shown in Fig. 5, sometimes appears as the result of
mapping. To prevent this, at least

¢€)#0 (36)

must hold in Q. This condition is not always satisfied easily.

1V. EXAMPLES OF SYNTHESIS

Examples of synthesis based upon processes I-IV will be
described. The fundamental functions used are shown in
Table I, where n, = 4 and ny = 2.

A. Synthesis Processes I and 11

The given parameters are: N =32, n=3, 1, =34, .
A, =70, and 13 = 7.4. The successive modification of the
circuit is shown in Fig. 6 for process I and in Fig. 7 for
process II. Fig. 8(a) and (b) depicts how the lowest three
eigenvalues of the circuit approach the prescribed values as
the analysis and modification are iterated for process I and
11, respectively. In Fig. 8 the horizontal solid lines indicate
the prescribed eigenvalues.

These examples show that process I produces a smoother
pattern than process I1, but much more iteration is needed to
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Fig. 7. - Circuit patterns for iteratvions numbers h = 0, 2, 4, and 7 by process IT (graphic output of the cdmputer).

\ AB The degree of the mapping function m = 16, thatis, N = 32.
o o The details of the modification processes are omitted for the

g NS S : sake of brevity.

E o The computer time for one cycle was about 2.5 s in both

é 51 a’\ b " processes. The differences in the final pattern and in the
WL ‘,-‘ | speed of convergence were not remarkable for the two
M ,#»" ! processes. However, processes III and IV are inferior to
I JI\A(:’) | '\)fh’ processes I and II in that the behavior of the convergence is
0o Stze(; 0 0 2sfep6h somewhat oscillatory. Besides, in some cases, a univalent

mapping could not be found. These methods, therefore,

@) ) should better be employed only when external coupling
Fig. 8. 'The behavior of eigenvalues. (a) The case of Fig. 6. (b) Thecaseof ports must be considered.

Fig. 7. Therefore, in this subsection, synthesis of an impedance
s matrix of a two-port planar circuit using process IV will be
reach the prescribed eigenvalues. The above statement is described in more detail. Two eigenvalues 4; = 4.0 and
valid for almost all cases. The computer time required for 1, = 5.0 are specified, and the prescribed values of the
one cycle of analysis and modification was about 2sinboth  associated eigenfunctions at the ports are given as,
processes when HITAC-8800 was used. " q11=2095,9,,=1095,9,; = —0.7,and q,, = 1.6 (see (24)).
‘ ] : Figs. 9 and 10 show the modification process and the
B. Synthesis Processes 11 and 1V convergence of parameters, respectively. In Fig. 9, P; and P,
Synthesis processes IIT and IV were applied to a similar denote the port locations. The computer time required for

problem, in which n =3, A; =3.5; 1, = 5.0, and 13 = 7.0. one step was a little less than 2 s. ’

F1g 9. Circuit patterns and port locations for iteration numbers h = 0, 3, 6, and 13 where P, and P, indicate port 1 and port 2,
respectively (graphic output of the computer).
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Fig. 10. The behavior of eigenvalues and the values of eigenfunctions at
the ports in the case of Fig. 9.

V. CoONCLUSION

A basic algorithm and numerical examples of the syn-
thesis of planar circuits have been presented. When the
number of the prescribed cigenvalues and external ports is
relatively small, the results are satisfactory both in the
computing time and accuracy. However, research is stillata
primitive stage; further efforts are needed to make the
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proposed method practical, especially for larger numbers of
eigenvalues and ports. In synthesis processes III and IV, the
problem of the multivalent region must be overcome to
make those methods practical.
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Equivalent Circuit Capacitance of Microstrip
Step Change in Width

CHANDRA GUPTA, STUDENT MEMBER, IEEE, AND ANAND GOPINATH, MEMBER, IEEE

Abstract—Calculated results which extend existing data on the
capacitance of step discontinuity are presented for w, /H of value 0.1,
0.5, 1.0, and 2.0, for relative dielectric constants of 15.1, 9.0, 4.0, and
2.3, and for w, /H in the range 0.1-10.0. The quasi-static method of
calculation is used, and the excess capacitance associated with the
steps is determined by the solution of the integral equation using
Green’s functions.

INTRODUCTION

HE RANGE of data currently available on the micro-
strip discontinuities is inadequate, thus microstrip cir-
cuit designs are currently implemented after a few trial
stages. The present paper extends the range of the capaci-
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tances of the step change in width discontinuity beyond that
provided by Farrar and Adams [1] and Benedek and
Silvester [2]. The calculations performed for this data utilize
the integral equation approach using Green's functions and
the concept of “excess charge” due to Benedek and Silvester
[2] to preserve numerical accuracy. The method of solution
discretizes the discontinuity into rectangular elements
and the excess charge is obtained by the Galerkin method.

Radiation and dispersion effects are neglected, and, there-
fore, the microstrip discontinuity problem may be reduced
to a quasi-static form. The stored energy of the step discon-
tinuity may then be represented by an equivalent circuit in
the form of a T circuit, given in Fig. 1(b), for the chosen
reference planes TT". The present calculations evaluate the
shunt capacitance of this circuit, the inductive componern...
have been presented elsewhere [3]

In the following sections, we briefly outline the formula-
tion and the method of solution followed by the results.



